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LETTER TO THE EDITOR

The effect of filling on the low-temperature energy
diffusion in disordered hopping systems

V I Arkhipov† and G J Adriaenssens
Laboratorium voor Halfgeleiderfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D,
B-3001 Heverlee-Leuven, Belgium

Received 5 August 1996

Abstract. The low-temperature energy relaxation of charge carriers in a disordered hopping
system is considered, taking into account the filling of hopping sites by localized carriers. A
non-linear equation for the occupation probability is derived and solved under the condition
of a constant total density of excited carriers. A characteristic time for the appearance of a
quasi-Fermi level is estimated.

The energy relaxation of charge carriers and optical excitations in disordered hopping
systems that are characterized by a broad energy distribution of hopping sites is a problem
of current interest in the study of both organic and inorganic disordered materials [1–
5]. This process is shown to be responsible for such phenomena as the time-dependent
red-shift in photoluminescence spectra in amorphous semiconductors [1] and conjugated
polymers [3, 6, 7], low-temperature carrier recombination and photoconductivity [2, 5],
high-field carrier transport at low temperatures [8] etc. A very important characteristic
feature of low-temperature relaxations is that only jumps to deeper energies are allowed
and that, consequently, the energy distribution of localized carriers always remains in non-
equilibrium. As long as the total density of hopping sites is finite, localized states belonging
to the deep tail of the distribution will be sooner or later filled by carriers. At longer times
this filling will strongly affect the relaxation kinetics. Thus, independently of the level of
initial excitation, the filling effect should be taken into account when the low-temperature
kinetics of carriers in a hopping system is considered. As far as we know, no attempt
at examining this problem has appeared in print. In the present letter we make such an
attempt under the assumption that the total carrier density is not changed during the energy
relaxation.

We start from the standard initial condition where att = 0 free carriers have been
generated and become trapped with uniform probability in a distribution of localized states.
Since at low temperatures, only downward carrier jumps are possible, most of the carriers
generated att = 0 will occupy ‘metastable’ hopping sites from which jumps to an empty
deeper energy site at some later timet remain possible. At the initial time,t = 0, all sites
are, obviously, metastable and the density of metastable states (DMS),gd(E, t), is simply
equal to the total density of states (DOS),g(E). In a spatially completely disordered system,
distances to deeper hopping sites, accessible for the next jump, are characterized by a broad
distribution such that some of the states are still metastable at any time. The probability
w(r, t) for a carrier to stay until the timet in a state separated from the nearest accessible
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neighbour by the distancer can be obtained directly from the standard Poisson distribution.
Indeed, given a jump probability per unit time ofλ = ν0 exp(−2γ r), where ν0 is the
attempt-to-jump frequency andγ is the inverse localization radius, the Poisson distribution

Pn(t) = (λt)n

n!
exp(−λt)

describes the distribution of the number of jumps,n, in a time intervalt . We are interested
in w(r, t), the no-jump term wheren = 0, of that distribution:

w(r, t) = exp[−ν0t exp(−2γ r)]. (1)

At the time t satisfying equation (1), the probability density,W , of finding the nearest
deeper hopping neighbour for a state with the energyE at the distancer is also given by
the Poisson formula as

W(E, r, t) = exp[−n(E, r, t)]
∂n(E, r, t)

∂r
(2)

where n(E, r, t) is the density of localized states with energies exceedingE within the
sphere of radiusr vacant at the timet . (The energy scale is chosen so that deeper states
have higher energies.) In a completely disordered system the functionn(E, r, t) takes the
form

n(E, r, t) = 4πr3

3

∫ ∞

E

dE′ [
g(E′) − ρ(E′, t)

]
. (3)

where ρ(E, t) is the energy distribution of localized carriers at the timet . Combining
equations (1) and (2) and integrating over the coordinate yields the probabilityϕ(E, t) for
a hopping site with the energyE to be a metastable state at the timet :

ϕ(E, t) =
∫ ∞

0
dr

∂n(E, r, t)

∂r
exp[−n(E, r, t)] exp[−ν0t exp(−2γ r)]. (4)

The energy-independent exponential term in the integrand of equation (4) represents a very
steep function of the variabler aroundr = rj = (1/2γ )ln(ν0t) such that the following
approximation becomes possible:

exp[−ν0t exp(−2γ r)] ≈ 0 r < rj (t)

rj (t) = (1/2γ ) ln(ν0t)

exp[−ν0t exp(−2γ r)] ≈ 1 r > rj (t).

(5)

This approximation allows an evaluation of the integral in equation (4) as

ϕ(E, t) = exp

{
−n

[
E,

1

2γ
ln(ν0t), t

]}
(6)

or equivalently, with the use of equation (3):

ϕ(E, t) = exp

[
− π

6γ 3
[ln(ν0t)]

3
∫ ∞

E

dE′ [
g(E′) − ρ(E′, t)

]]
. (7)

With the above probability, the DMS can be written as

gd(E, t) = ϕ(E, t)g(E). (8)

Invoking once more the initial assumption of energy-independent capture constants, the
distribution of localized carriers,ρ(E, t), may be calculated as a product of the DMS and
a function of timeχ(t):

ρ(E, t) = χ(t)gd(E, t). (9)
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Figure 1. Temporal evolution of the energy distributions of (a) the localized carrier density,
ρ(E, t), and of (b) the occupation probability,f (E, t), for an exponential DOS function (dotted
line): g(E) = (Nt /E0) exp(−E/E0). The ratiosπNt/6γ 3 = 0.01 andp0/Nt = 0.1 were
chosen. Curves 1 to 6 correspond toν0t-values of 10, 103, 105, 107, 109, and 1011 respectively.

An energy- and time-dependent occupation probabilityf (E, t), defined through

f (E, t) = ρ(E, t)

g(E)
= χ(t)gd(E, t)

g(E)
= χ(t) ϕ(E, t) (10)

then reads

f (E, t) = χ(t) exp

[
− π

6γ 3
[ln(ν0t)]

3
∫ ∞

E

dE′ g(E′)
[
1 − f (E′, t)

]]
(11)

where the definition (10) was used to replace theρ(E′, t) of equation (7) withg(E′)f (E′, t).
Equation (11) represents an integral equation for the occupation probability. To solve
this equation one should convert it into a partial differential equation. Differentiating
equation (11) with respect to energy yields

∂f (E, t)

∂E
− π

6γ 3
[ln(ν0t)]

3 g(E)f (E, t)
[
1 − f (E, t)

] = 0. (12)
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Figure 2. Temporal evolution of the energy distributions of (a) the localized carrier density,
ρ(E, t), and of (b) the occupation probability,f (E, t), for a Gaussian DOS function (dotted
line). The parameter values are identical to the ones for figure 1.

Equation (12) can be easily solved. The solution reads

f (E, t) =
{

1 +
[

1

f (∞, t)
− 1

]
exp

[
π

6γ 3
[ln(ν0t)]

3 N(E)

]}−1

(13)

whereN(E) is the density of localized states whose energies,E′, exceedE:

N(E) =
∫ ∞

E

dE′ g(E′) (14)

and the functionf (∞, t) is calculated below by making use of the normalization condition.
In the absence of recombination the total number of generated carriers,p0, remains the
same in the course of energy relaxation, and the functionf (E, t) must meet the following
condition: ∫ ∞

−∞
dE′ g(E′)f (E′, t) = p0. (15)

Substituting equations (13) and (14) into equation (15) and integrating over energy yields
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the following expression for the functionf (∞, t):

f (∞, t) = 1 − exp[−(πp0/6γ 3) [ln(ν0t)]
3]

1 − exp[−(πNt/6γ 3) [ln(ν0t)]
3]

(16)

whereNt is the total density of localized states. Substituting equation (16) into equation (13)
then finally leads to an expression for the occupation probability for the hopping sites as a
function of the primary system parameters:

f (E, t) =
{

1 + exp[−(πp0/6γ 3) [ln(ν0t)]
3] − exp

[−(πNt/6γ 3) [ln(ν0t)]
3]

1 − exp[−(πp0/6γ 3) [ln(ν0t)]
3]

× exp

[
π

6γ 3
[ln(ν0t)]

3 N(E)

]}−1

. (17)

When the filling effect is important the energy distribution of localized carriers is often
described in terms of a time-dependent quasi-Fermi level. Equation (17) allows us to
estimate the applicability of this approach to the problem of hopping carrier relaxation.
Using the traditional definition of the quasi-Fermi level,EQF , as f (EQF , t) = 1/2 one
gets,

N(EQF ) = 6γ 3

π
[ln(ν0t)]

−3

× ln

{
1 − exp[−(πp0/6γ 3) [ln(ν0t)]

3]

exp[−(πp0/6γ 3)[ln(ν0t)]3] − exp
[−(πNt/6γ 3)[ln(ν0t)]3

]}
. (18)

Equation (18) predicts that the stationary position of the quasi-Fermi level characterized by
the condition

N(Est
QF ) = p0 (19)

will be established for times longer thantQF ,

tQF = 1

ν0
exp

[(
6γ 3

πp0

)1/3
]

(20)

provided thatp0 remains small with respect toNt . Time-dependent energy distributions of
localized carriers and of the occupation probability are shown on figures 1 and 2 for an
exponential and a Gaussian distribution of hopping sites. The ratio of the total density of
generated carriers,p0, to the total density of localized states,Nt , was put at 0.1.

In conclusion, the discussion of energy diffusion and relaxation in a disordered hopp-
ing system is extended to the consideration of the effect of hopping site filling. This
phenomenon must be taken into account every time a many-particle problem, such as those
of carrier recombination, photoconductivity, photoluminescence, etc, is analysed under low-
temperature conditions. As one can see from figures 1 and 2 the energy distribution of
carriers at shorter times mimics the normal ‘small-signal’ energy relaxation—see e.g. [1, 3].
At longer times the filling effect becomes dominant and an immobile demarcation energy
level is established for times exceedingtQF . The characteristic timetQF exponentially
increases with decreasing concentration of excess carriers—see equation (20). The principle
result of the present letter is the occupation probability function given by equation (17).
This function will have to be applied in the future to consideration of low-temperature
carrier recombination in disordered hopping systems and similar problems.
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L642 Letter to the Editor

References
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